물 자연 그리고 사람 - 물로 더 행복한 세상을 만들어가겠습니다.
HOME성과논문실적

논문실적

미세먼지 예측 성능 개선을 위한 CNN-LSTM 결합 방법 게시글의 제목, 학술지명, 저자, 발행일, 작성내용을 보여줌
미세먼지 예측 성능 개선을 위한 CNN-LSTM 결합 방법
학술지명 한국정보통신학회 저자 신강욱
발표일 2020-01-31

최근 IoT 센서의 확산과 빅데이터, 인공지능 관련 기술의 발전으로 인해 미세먼지 오염도에 대한 시계열 예측 관련 연구가 활발하게 진행되고 있다. 하지만 미세먼지 오염도를 나타내는 데이터가 급격히 변하는 특성(Extreme)을 가지고 있어 기존의 시계열 예측방법으로는 현장에서 사용할 수 있는 수준의 정확도를 내지 못하고 있다. 이 논문에
서는 LSTM을 활용하여 미세먼지 오염도를 예측할 때 CNN을 통한 환경상황을 분류한 결과를 반영하는 방법을 제안한다. 이 방법은 LSTM과 CNN이 독립적이지만 인터페이스를 통해 하나의 네트워크로 통합되기 때문에, 응용 LSTM보다 이해하기 쉽다. Beijing PM2.5 데이터를 활용한 제안 방법의 검증 실험에서 예측 정확도와 변화 시기에 대
한 예측력이 다양한 실험 case에서 일관되게 향상된 결과를 보였다.

목록