물 자연 그리고 사람 - 물로 더 행복한 세상을 만들어가겠습니다.
HOME성과논문실적

논문실적

Data Mining Techniques for Water Quality Prediction in Downstream by Dam Regulation 게시글의 제목, 학술지명, 저자, 발행일, 작성내용을 보여줌
Data Mining Techniques for Water Quality Prediction in Downstream by Dam Regulation
학술지명 12th International Conference on Hydroinformatics 저자 최두용,최태호,김주환,이두진
발표일 2016-08-23

Water quality deterioration can be caused at downstream in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen (NH3-N) concentrations has hampered chemical treatment processes of a water treatment plant in the river basin. Monthly flow allocation from upstream dam is important for downstream NH3-N control. The models for the forecasting of NH3-N concentration at intake station are developed by considering dam outflow and river water quality such as alkalinity, temperature, and NH3-N of previous time step.
The water quality models are based on data mining techniques, such as decision tree, artificial neural network to support dam operations through providing forecasted NH3-N concentrations. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality.

목록