in relation with different land uses in a watershed, a monitoring activity and field measurements were carried
out and data points were recorded during the rainfall events for 2 years. The study area includes industrial, urban, and rural sectors, which can represent a model case for the runoff study. Each sector was monitored with methodology and parameters including partial event mean concentration, first flush effect, mass first flush ratios, and correlation analysis.The Banwol Industrial Outfall No. 4 (4TG), an industrial area, showed a strong first flush effect, indicating that pollutants such as suspended solids, chemical oxygen demand,
total nitrogen, and total phosphorus, were discharged at the early stage of a storm. An MFF30 analysis of the runoff revealed a mean pollutant load was over 50 %. In the Ansan Stream, an urban area, a strong first flush effect did not appear; however, the concentrations of pollutants reached a peak some time later during a storm event. Then, the concentrations of pollutants quickly reduced. On the other hand, Jangjunbo and Munsan Stream, rural areas, did not exhibit the first flush effects, and when considering the value of
MFF30, 30 %or fewer pollutants on average were discharged at the initial stage of a storm. This means most of pollutants were streamed out at the later time of a storm event. The monitoring results found that the runoff characteristics of non-point pollutants in industrial, urban, and rural areas were distinctly different and site-specific. Therefore, each watershed management plan should be prepared to meet its own
characteristics. Also, this kind of data can be an important base in designing and sizing a regional wastewater treatment facility to treat pollutants from a contaminated watershed.