자료기반 학습 알고리즘을 이용한 지하수위 변동 예측 모델의 국가지하수관측망 자료 적용에 대한 비교 평가 연구 |
---|
학술지명 대한지질공학회
저자 김용철,윤희성,김규범,하규철
발표일 2013-06-30
|
지하수자원의 효율적인 관리를 위해 강우에 대한 지하수위 변화를 예측하는 것은 중요한 문제이다. 본 연구에서는 자료기반 학습 알고리즘인 인공신경망과 지지벡터기계를 이용하여 시계열 예측 모델을 만들고 이를 국가지하수관측망 중 가산, 신광, 청성 관측소 지하수위 변화 예측에 적용하였다. 모델의 입력 성분 구성 방법에 따라 네 가지 모형을 설정하고 각 관측소 및 모델 별 예측 결과를 비교 평가하였다. 강우 입력 모형의 경우 지하수위 감쇠 및 기저 변화 예측을 위해 큰 규모의 입력 성분 구성이 필요하지만 강우 및 지하수위 입력 모형은 보다 작은 규모의 입력 성분으로 효과적으로 지하수위 변화를 예측하는 것으로 나타났다. 강우 및 지하수위 입력 모형의 활용성 증대를 위해 고안된 반복 예측 모형의 경우 관측값과 예측값 사이에 0.75~0.95의 상관계수를 보여 적용 가능성이 큰 것으로 판단된다. 전체적으로 강우-지하수위 교차상관계수가 낮은 신광 관측소의 예측 오차가 크게 나타났고 ANN 모델에 비해 SVM의 예측력이 다소 높은 것으로 조사되었다. 또한 반복 예측 모형의 모델 파라미터 선정 과정에서 보정 단계 오차에 대한 예측 단계 오차의 비의 분포를 조사한 결과 SVM의 경우가 더 작게 나타나 SVM이 본 연구 자료에 대해 보다 안정적이고 효율적인 모델임을 평가하였다. |