감 사 결 과 보 고 서

【기존댐치수능력증대사업종합감사】

2009. 12
Ⅰ 감사실시 개요

1. 감사대상 및 범위

해당 관리단에서 감독업무를 수행하는 대규모 건설공사인 기존댐 치수능력증대 사업에 대한 종합감사는 매년 시행중에 있으며 ‘08년부터 감사방식을 변경하여 대규모 감사방 편성을 지양하고, 업무 분야별로 감사기간을 설정·운영함으로서 적법성 위주의 지적·적발감사에서 과학적이고 체계적인 접근을 통해 핵심문제점을 진단·개선하는 정책감사로 변화를 도모하여 왔으며 시공특성상 감사결과는 곧바로 공사시행에 반영될 수 있도록 실질적인 감사를 시행하였다.

금번 감사는 건설분야에 대해 시행되었으며, 공사계획 및 설계, 공사시공, 시설물 유지관리 등 크게 네가지 측면의 감사범위를 설정하여 포괄적으로 감사 하였으며, 특히, 불합리한 요소를 발굴·개선하여 공정을 개선하고 원가절감을 유도하는 한편, 장래 시설물의 효율적인 유지운영을 감안한 건설 공사시행에 중점을 두고 감사를 실시하였다.

2. 감사 초점

□ 예산집행의 적정성 확보를 통한 공사 원가 절감
□ 공사추진상 문제점과 불합리한 요소 발굴 및 개선대책 제시
□ 부실공사 방지를 위한 폼질관리 및 시공실태 점검

3. 감사 기간 및 방법

□ 감사기간 : 2009. 8. 31 ~ 9. 25(20일간)
□ 감사방법 : 건설현장임을 고려하여 현장 실지감사를 위주로 시행

<table>
<thead>
<tr>
<th>구분</th>
<th>월</th>
<th>화</th>
<th>수</th>
<th>목</th>
<th>금</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 주차</td>
<td>8/31</td>
<td>9/01</td>
<td>9/02</td>
<td>9/03</td>
<td>9/04</td>
<td></td>
</tr>
<tr>
<td>2 주차</td>
<td>9/07</td>
<td>9/08</td>
<td>9/09</td>
<td>9/10</td>
<td>9/11</td>
<td>[임하댐]</td>
</tr>
<tr>
<td>3 주차</td>
<td>9/14</td>
<td>9/15</td>
<td>9/16</td>
<td>9/17</td>
<td>9/18</td>
<td>[안동댐]</td>
</tr>
</tbody>
</table>

【섬진강댐】
【대암댐】
【소양강댐】
【안동댐】
【대청댐】
【임하댐】
Ⅱ 기존댐 치수능력증대사업 현황

1. 추진배경

기존댐 치수능력 증대사업은 설계홍수량에 대한 댐 설계기준 강화(빈도별 홍수량 → 가능최대홍수량)와 ‘02년 태풍 “RUSA” 등 최근 기상이변이 자주 발생함에 따라 ‘03.4.24 ~ ’04.9.23까지 기존댐에 대하여 「댐 수문학적 안정성 검토 및 치수능력 증대방안 기본조사」를 시행, 수문학적 안정성 검토 결과, 댐체 월류 등으로 구조적 대책이 필요한 소양강댐 등 15개댐에 대하여 치수능력 증대사업을 우선 추진중에 있다.

2. 추진경위

◦ ‘98 ~ ‘02 : 각 댐별 정밀안전진단 시행
 - 소양강댐 등 7개댐 수문학적 안정성 확보 미흡, 대책 수립추진
◦ ‘01. 7. 4 : 가능최대강수량(PMP) 재산정
◦ ‘03. 4. 4 : 감사원의 자연재해대비 실태감사 결과
 - 기상이변에 대비한 댐안전성 확보대책 조속 추진 촉구
◦ ‘03. 4. 22 : 국무회의 보고(건교부)
 - 이상홍수 대비 댐 안전성 제고를 위한 사업 시행방안
◦ ‘03.4 ~ ’04.9 : 댐 수문학적 안정성 검토 및 치수능력증대 기본계획 수립
 - PMP・PMF 재산정, 수문학적 안정성 검토 및 댐벌 방안 제시

3. 추진현황

댐체 월류 등에 따라 안전대책이 필요한 23개 댐 중 시급성에 따라 [표-1]과 같이 18개댐을 우선 추진중에 있으며 2008년까지 총사업비 1.9조원 중 4,200억원을 투입하여 6개댐(영천댐, 달방댐, 광동댐, 구천댐, 수어댐, 연초댐)을 완료하였고, 소양강댐 등 6개댐은 공사를 추진중이고 주암댐 등 6개댐은 설계중에 있으며 미착수된 5개댐은 사업 우선순위에 따라 연차별로 추진토록 계획되어 있다.

1) 가능최대홍수량(Probable Maximum Flood, PMF) : 주어진 지속기간 동안 어느 특정 위치에 주어진 유역면적에 대하여 연중 어느 지정된 기간에 물리적으로 발생할 수 있는 이론적 최대 홍수량
표-1. 기존댐 치수능력 증대사업 추진현황

<table>
<thead>
<tr>
<th>구분</th>
<th>원료(6)</th>
<th>공사중(6)</th>
<th>설계중(6)</th>
<th>미착수(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>월류 (13개)</td>
<td>광동, 영천, 수어, 연초</td>
<td>소양강,대청,임하, 대암,섬진강,안동</td>
<td>운문</td>
<td>충주, 남강</td>
</tr>
<tr>
<td>여유고 부족 (10개)</td>
<td>달방, 구천</td>
<td>-</td>
<td>주암, 사연, 보령, 밀양, 부안</td>
<td>신암, 안계, 합천</td>
</tr>
</tbody>
</table>

표-2. 댐별 치수능력 증대사업 세부현황

(단위 : 억원)

<table>
<thead>
<tr>
<th>구분</th>
<th>댐명</th>
<th>PMF(㎜)</th>
<th>점도 결과</th>
<th>치수능력 증대방안</th>
<th>연차별 투자계획</th>
</tr>
</thead>
<tbody>
<tr>
<td>설계</td>
<td>재산정</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>계</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>결</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>준공 (6개댐)</td>
<td>영천댐</td>
<td>74년</td>
<td>296 (1000년)</td>
<td>715 월류</td>
<td>보조여수로 신설 (개가식)</td>
</tr>
<tr>
<td></td>
<td>달방댐</td>
<td>88년</td>
<td>293</td>
<td>564.7 여유고부족</td>
<td>기존 여수로 확장</td>
</tr>
<tr>
<td></td>
<td>광동댐</td>
<td>85년</td>
<td>428</td>
<td>878 월류</td>
<td>기존 여수로 확장</td>
</tr>
<tr>
<td></td>
<td>구천댐</td>
<td>82년</td>
<td>420 (1000년)</td>
<td>693 여유고부족</td>
<td>기존여수로 확장 + 파라페트월</td>
</tr>
<tr>
<td></td>
<td>수어댐</td>
<td>74년</td>
<td>411 (1000년)</td>
<td>1,135 월류</td>
<td>보조여수로 신설 (타달식)</td>
</tr>
<tr>
<td></td>
<td>연초댐</td>
<td>77년</td>
<td>368 (1000년)</td>
<td>706 월류</td>
<td>기존여수로 확장</td>
</tr>
<tr>
<td>공사중 (6개댐)</td>
<td>소양강</td>
<td>68년</td>
<td>631.9 (1000년)</td>
<td>810 월류</td>
<td>보조여수로 신설 (타달식)</td>
</tr>
<tr>
<td></td>
<td>섬진강</td>
<td>40년</td>
<td>332 (1000년)</td>
<td>559 월류</td>
<td>비상여수로 신설 (타달식)</td>
</tr>
<tr>
<td></td>
<td>대청댐</td>
<td>74년</td>
<td>532</td>
<td>591 월류</td>
<td>비상여수로 신설 (개가식)</td>
</tr>
<tr>
<td></td>
<td>대암댐</td>
<td>68년</td>
<td>332 (1000년)</td>
<td>689 월류</td>
<td>보조여수로 신설 (타달식)</td>
</tr>
<tr>
<td></td>
<td>임하댐</td>
<td>84년</td>
<td>424</td>
<td>561 월류</td>
<td>비상여수로 신설 (타달식)</td>
</tr>
<tr>
<td></td>
<td>안동댐</td>
<td>72년</td>
<td>530</td>
<td>580 월류</td>
<td>비상여수로 신설 (개가식)</td>
</tr>
<tr>
<td>설계 (5개댐)</td>
<td>주암 (본조)</td>
<td>84년</td>
<td>722</td>
<td>846 여유고부족</td>
<td>비상여수로 신설 (타달식)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84년</td>
<td>777</td>
<td>992 여유고부족</td>
<td>기존여수로 개선 및 수문설치</td>
</tr>
<tr>
<td></td>
<td>사연댐</td>
<td>62년</td>
<td>412 (1000년)</td>
<td>645 여유고부족</td>
<td>기존 여수로 확장안</td>
</tr>
<tr>
<td></td>
<td>보령댐</td>
<td>91년</td>
<td>682.0</td>
<td>718 여유고부족</td>
<td>보조여수로 신설안 (타달식) + 파라페트월</td>
</tr>
</tbody>
</table>
구분 | **댐명** | **PMP(㎜)** | **정토 결과** | **처수능력 증대방안** | **년차별 투자계획**
--- | --- | --- | --- | --- | ---
| | | 설계 | 재산정 | 보조여수로 설치 | 2008년까지 | 2009년 | 2010년이후 |
| 미착수 (5개역) | 밀양댐 '91년 | 554.0 | 674 | 여수고부속 | 보조여수로 설치 | 230 | - | 5 | 225 |
| | 부안댐 '90년 | 741.6 | 800 | 여수고부속 | 보조여수로 설치 | 254 | - | 5 | 249 |
| | 용문댐 '88년 | 444 | 568 | 원류 | 보조여수로 설치 | 833 | - | 5 | 828 |
| 비착수 | 충주댐 '71년 | 510.5 | 598 | 원류 | 상류댐건설 + 보조여수로 설치 | 2,007 | - | - | 2,007 |
| | 남강댐 '65년 | 565.0 | 654 | 원류 | 상류댐건설 + 보조여수로 설치 | 3,870 | - | - | 3,870 |
| | 선암댐 '63년 | - | 979 | 여수고부속 | 보조여수로 설치 | 143 | - | - | 143 |
| | 안계댐 '68년 | 272 (200년) | 863 | 여수고부속 | 보조여수로 설치 | 164 | - | - | 164 |
| | 합천댐 '74년 | 519.0 | 608 | 여수고부속 | 보조여수로 설치 | 444 | - | - | 444 |

* 자료출처: 「댐 수문학적 안정성 검토 및 치수능력 증대방안 기본조사 및 「각 댐별 기본 및 실시설계 성과」」

[표-3. 현재 시행중인 기존댐 치수능력증대사업 개요]

<table>
<thead>
<tr>
<th>구분</th>
<th>사업 개요</th>
</tr>
</thead>
<tbody>
<tr>
<td>소양강댐 보조여수로</td>
<td>○ 사업위치: 강원도 춘천시 동면 월곡리(한강수계 북한강) ○ 총사업비: 1,750억원 ○ 사업기간: 2003년2009년 ○ 사업규모: 보조여수로 설치 1식 - 규모: D14m×2련(L1=1,276.4m, L2=1,206.4m) - 문비: 14.7m×14.01m×4문(Radial Gate) - 감세공: Flip Bucket ○ 사업효과: 홍수방어능력증대(방어홍수량: 1,675㎥/s→2,290㎥/s) ※ '03. 410: 기본설계, '03.10~'04. 4 : 실시설계, '04. 8.30 : 공사착공</td>
</tr>
<tr>
<td>대청댐 비상여수로</td>
<td>○ 사업위치: 대전광역시 대덕구 미호동(금강수계 금강) ○ 총사업비: 1,903억원 ○ 사업기간: 2004년2012년 ○ 사업규모: 비상여수로 설치 1식 - 총연장: L = 1,145m(접근수로 제외) - 문비: 12.0m×17.18m×5문(Radial Gate) - 감세공: 정수지형(Stilling Basin) ○ 사업효과: 홍수방어능력증대(방어홍수량:14,700㎥/s→21,742㎥/s) ※ '05. 3'05.9 : 기본설계, '05.10~'06. 4 : 실시설계, '06. 9. 7 : 공사착공</td>
</tr>
<tr>
<td>구분</td>
<td>사업 개요</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>안동댐 비상여수로</td>
<td>○ 사업위치 : 경북 안동시 성곡동(낙동강수계 낙동강) ○ 총사업비 : 963억원 ○ 사업기간 : 2005년2011년 ○ 사업규모 : 비상여수로 설치 1식 - 총 연장 : B67.240.0m×L385m - 문비 : B16.8m×L12.5m×4문(Radial Gate) - 감쇠공 : Flip Bucket ※’05.511 : 기본계획, ’07.511 : 기본설계, ’07.12~’08.6 : 실시설계, ’08.12.1 : 착공</td>
</tr>
<tr>
<td>임하댐 비상여수로</td>
<td>○ 사업위치 : 경북 안동시 임하면 임하리(낙동강수계 반변천) ○ 총사업비 : 1,672억원 ○ 사업기간 : 2004년2009년 ○ 사업규모 : 비상여수로 설치 1식 - 형식 : 원통형 터널식(댐 우안) - 터널규모 : D15m×3면×1,262m(L1=379m, L2=421m, L3=462m) - 문비 : B11.8m×H14.65m×6문(Radial Gate) ※’05.3’05.9 : 기본설계, ’05.10~’06.4 : 실시설계, ’06.8.31 : 공사착공</td>
</tr>
<tr>
<td>대암댐 보조여수로</td>
<td>○ 총사업비 : 398억원 ○ 사업기간 : 2004년2010년 ○ 사업규모 : 비상여수로 설치 1식 - 형식 : 반원통 원통형 터널식(Non Gate) - 터널규모 : D10m×2면×844m(L1=417m, L2=427m) ※’04.5’05.4 : 기본 및 실시설계, ’05.12.9 : 공사착공</td>
</tr>
<tr>
<td>섬진강댐 비상여수로</td>
<td>○ 사업위치 : 전북 임실군 강진면(섬진강수계 섬진강) ○ 총사업비 : 2,013억원(지방비 234억 제외) ○ 사업기간 : 2003년2011년 ○ 사업규모 : 비상여수로 및 용수공급시설 설치 등 1식 - 비상여수로 : 터널식(D13.5m×2면, L1 674m, L2 624m) - 문비 (11.5m×12.13m×4문(Radial Gate)) - 용수공급시설(D1,500mm) 등 1식 - 운암취수구 등 기존시설 보강 ※’03.6’04.11 : 타당성조사 및 기본설계, ’04.12~’06.12 : 실시설계, ’08.6 : 계약 및 착공</td>
</tr>
</tbody>
</table>
감사 결과

[Ⅲ-1] 공사 계획 및 시공 부적정에 관한 사항

<table>
<thead>
<tr>
<th>번호</th>
<th>제목</th>
<th>처분요구 종류</th>
<th>시정</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>과다한 공사계획 조정</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【실 태】
기존댐 치수능력증대사업은 사업의 특성상 고난도의 민간 기술력을 도입하기 위하여 다수의 사업이 설계·시공일괄입찰(T/K)로 발주(현재 추진중인 6개댐중 4개댐이 T/K 발주)됨에 따라 입찰업체에서는 공사 수주만을 위하여 설계에서 본래의 기능확보 및 향후 유지관리 용이성에 중점을 두기보다는 보여주기 위한 설계 즉, 외관위주의 설계에 많은 부분을 치중하고 있는 실정이다.

이로 인하여 각 사업별로 공사내역에 불요불급하거나 유지관리가 곤란한 부대시설물이 다수 포함되어 있어 정부예산의 효율적인 집행이 곤란한 상황이므로 개별 사업특성 및 향후 유지관리와 연계되지 않은 시설물은 설치여부를 재검토함으로써 최적의 시설물 도입을 검토하여야 한다.

또한 일부 시설의 경우, 설치목적 및 기능상 문제점을 정확히 검토하지 않고 시공하여 준공이후 제 기능 발휘가 어려운 사례가 도출됨으로써 향후 같은 사례가 재발되지 않도록 할 필요성이 있다.

【검토 내용】

□ 문제점 및 원인

(○ ○ ○ 댐 생태정화분수) 비상여수로 도류부 끝부분에 수질정화 및 경관연출을 위하여 생태정화분수 시설(STS Submersible Pump 2대, 스텐 배수펌프 2대, control panel 등, 공사비 523백만원)을 계획하였으나 동 지역은 안전상 일반인의 접근을 제한해야 하는 지역이며 비상여수로의 기능상 생태정화분수의 설치 필요성은 매우 멀어지는 실정이다.
(○○댐, ○○댐, ○○댐 부유물 차단시설) 비상여수로 입구부에 홍수방류시설 수문조작에 영향을 줄 수 있는 부유물 유입을 차단하기 위하여 부유물차단시설 설치를 계획하고 있으나 기존댐의 경우 댐상류 적정지점에 홍수기 저수지로 유입하는 부유물을 차단하기 위하여 부유물 차단시설이 기 설치되어 있어 대부분의 저수지 유입 부유물은 댐에 근접하기 이전 상기시설에서 차단되고 있는 설정으로 필요성이 떨어지는 설정이다.

[표-4. 부유물 차단시설 계획 현황]

<table>
<thead>
<tr>
<th>구분</th>
<th>차단시설 연장</th>
<th>도급공사비</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>L=980m</td>
<td>498백만원</td>
</tr>
<tr>
<td>○○댐 비상여수로</td>
<td>L=280m</td>
<td>97백만원</td>
</tr>
<tr>
<td>○○댐 비상여수로</td>
<td>L=460m</td>
<td>217백만원</td>
</tr>
<tr>
<td>○○댐 비상여수로</td>
<td>L=240m</td>
<td>184백만원</td>
</tr>
</tbody>
</table>

(○○댐 진입도로 박스) ○○댐 비상여수로 유출부에 수문방류시설 방출수가 발전소 진입도로(B=10.0m)상으로 사출되는 점을 감안, 비상방류시 차량의 원활한 통행을 위하여 1개차로에 대하여 진입도로 박스(L=165m, H=6.5m, B=5.95m, 설치비 992백만원)를 설치토록 계획하고 있으나(*기본설계 기술심의의 심의의견 조치 사항) 비상여수로는 비상사태시에만 운영되며 또한 동 도로가 댐관리를 위한 진입도로로 비상여수로 방류시설 차량통행 필요성과 방류시설 발전소에 진입 가능한 대체정선 확보가능 등을 종합적으로 고려할 때 진입도로 박스 설치 필요성은 매우 떨어질 뿐만 아니라 1개차로만 박스설치시에는 평상시 차량운행 중 안전사고 발생위험성이 높은 설정이다.

(○○댐 표면침하측정점) ○○댐은 보조여수로 터널공사중 발생하는 다양한 굴착암처리(281,974㎥)를 위해 댐 하류 체제에 사토장을 운영중에 있다. 기존 댐체에는 댐의 표면침하량을 계측하기 위한 표면침하측정점 3개소가 설치되어 있
여 계측의 연속성 및 일관성을 위하여 약 6m의 Casing을 추가성토구간을 통과, 설치함으로써 기존 침하점인 인상하는 공사를 시행하였으나 현재의 상태로는 Casing과 추가성토구간의 압/토사에 의 한 마찰력으로 인하여 기존 댐체의 정확 한 변위측정이 곤란한 실정으로 시공보 완이 필요한 실정이다.

(○○댐 공원시설 계획) 보조여수로 굴착후 발생된 굴착암을 댐하류 사면에 사토하고 경치 후 지역주민이 활용할 수 있도록 축구장 및 다목적 구장을 조성 하는 것으로 계획하였으나 공원조성계획 중 현장 특성을 고려하지 않고 과도한 시설이 반영되어 효율적인 예산집행이 어려운 설정이다.

※ 구장 규격 : 축구장 105m×58m, 다목적구장 31m×18m

 일반적으로 점토블럭의 경우 사무실 인근이나 사람들의 화장이 잦은 곳에 미관 등을 고려하여 설치되는 포장재료이나 ○○댐 하류 축구장 및 다목적구장 인근에 점토블럭 포장이 680㎡이 반영되어 있고 (점토블럭<46천원/m²> ; 소형고압블럭<18천원/m²> 대비 256%) 댐 하류 부지에 설치 예정인 축구장 경계에 비구 방지를 위한 PE 그물망(H=4~6m, L=332m)과 외부인 접근방지를 위한 메쉬휀스(H=2m, L=332m)가 이중으로 설치·계획되어 있다.

따라서 ○○댐 치수증대사업 관련 유휴공간에 설치예정인 축구장이 경제적으로 시공될 수 있는 조치(감 66백만원)가 필요하다.

(○○댐 건축공사) ○○댐 비상여수로 신설 이후 내방객 및 지역주민들에게 관광과 휴식공간을 제공하기 위하여 비상여수로 우안 대청여울마루 공원 인근에 지상2층의 철골콘크리트조 전망대(탑조대)를 신축하고 전망대와 720m 이격된 위치에 비상여수로의 시설관리 및 감시를 고려하여 여수로 좌안 물받은 마당에
지상 1층의 철골콘크리트조 관리사무소를 추가 신축하는 계획이 수립되어 있으나
향후 본댐과 지리적 근접성에 따른 휴게 및 여가공간 제공에 대한 역할분담 및
실질적인 유지관리 가능성을 고려한 합리적인 계획조정이 필요한 실정이다.

[표-5. 전망대 및 관리사무소 건축계획 현황]

<table>
<thead>
<tr>
<th>구분</th>
<th>면적(㎡)</th>
<th>공사비(백만원)</th>
<th>주요시설</th>
</tr>
</thead>
<tbody>
<tr>
<td>전망대</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>지하층</td>
<td>119.0</td>
<td>1,405</td>
<td>전망공간, PIT</td>
</tr>
<tr>
<td>지상1층</td>
<td>550.3</td>
<td></td>
<td>엘리베이터홀, 계단실, 전망테크</td>
</tr>
<tr>
<td>지상2층</td>
<td>497.5</td>
<td></td>
<td>휴게 및 전망공간, 엘리베이터홀, 화장실, 전망테크</td>
</tr>
<tr>
<td>소계</td>
<td>1,166.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>관리사무소</td>
<td></td>
<td>795</td>
<td>사무실, 숙직실, 샤워실, 변전실, 창고, 공중화장실</td>
</tr>
<tr>
<td>지상1층</td>
<td>623.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>계</td>
<td></td>
<td>1,790.2 2,200</td>
<td></td>
</tr>
</tbody>
</table>

전망대(탑조대) 조감도
관리사무소 조감도
□ 결과

각 댐별로 제반 부대시설에 대한 필요성 여부를 재검토하여 외관위주의 불요불급한 시설은 가급적 계획에서 제외함으로써 국가예산을 절감하고 공사 추진중 발생한 시공오류 사항에 대하여는 제기능을 발휘할 수 있도록 보완 조치할 필요가 있다.

【조치할 사항】

기존댐 처수능력증대사업의 본래 목적과 관련성이 없고 불요불급한 시설로 각 사업별 내역에 포함되어 있는 생태정화분수(○○댐), 부유물차단시설(○○댐, ○○댐, ○○댐), 진입도로 BOX(○○댐), 점토블럭 및 2중 흉스(○○댐) 및 과 다한 건축시설(전망대 및 관리사무소 대청댐) 등은 설치여부 및 규모를 재검토하여 예산집행의 효율성을 제고하시고 시공오류로 제 기능을 발휘하지 못하는 표면침하계(○○댐)는 본래의 목적이 이루어 절수 있도록 보완하시기 바랍니다.

[시정 : ○○댐관리단, 권관리단, ○○권관리단]
번호 | 2 | 제목 | ○ ○댐 비상여수로 재2사토장 복구계획 재검토 | 처분요구 종류 | 통보

【실 태】

○ ○ 권관리단에서 시행중인 “○ ○댐 비상여수로 건설공사”의 경우, 터널 굴착시 발생되는 토사 1,444천㎡ 중 128천㎡을 골재 등으로 재활용하고 나머지 1,316천㎡은 제1사토장(위치 : 비상여수로 터널 입구 부 댐저수지내) 및 제2사토장
(위치 : 터널 입구부에서 2.5㎞ 이격 별도부지)으로 사토시키는 것으로 계획하여 시행중에 있다.

이중 제1사토장은 공사 후 블루오브레 파크로 복구하는 것으로 계획하고 있으며, 터널 입구부에서 2.5㎞ 떨어진 곳에 제2사토장(A=89천㎡)을 조성하여 620천㎡의 토석을 사토중에 있으며 사토 후 친환경 복구를 위하여 사토장 부지위에 교목 2,694주, 관목 6,830주, 묘목 9,000주 식재 및 건천, 여울, 습지 등의 시설물을 설치 후 블루에코 파크로 조성하는 등 제2사토장에 총 591백만원 예산규모의 조경계획이 수립되어 있다.

【○ ○댐 비상여수로 사토장 복구 조감도】

그리고 제2사토장 인근에 4대강 살리기 사업의 일환으로 ○ ○댐과 ○ ○댐을 연결하여 연계운영을 통하여 낙동강 본류 추가 용수공급을 위한 “○ ○-○ ○댐 연결사업”이 추진되고 있으며 감사일 현재 KDI에서 예비타당성조사를 수행중에 있다.
※ ○○-○○ 댐 연결사업 현황

□ 사업목적: 홍수기 무효방류량을 활용한 수자원 추가확보(32백만㎥/년)
□ 시설내용: 터널 D5.0m×1,800m, 진입도로 1.5㎞
□ 총사업비: 1,072억원

【검토 내용】

□ 문제점 및 원인

○○ 댐 비상여수로 공사 시행중 조성된 제2사토장의 경우, 사토 후 건천, 여울, 습지 등 다수의 조경시설이 계획되어 있으나 사토장으로 유입되는 유량이 매우 적어 적절치 못한 계획으로 판단되며 ○○-○○ 연결사업 시행시 터널 입구부와 제2사토장 거리가 0.5㎞임을 고려할 때, 제2사토장을 공사용 가설부지 등으로 유용하게 활용될 가능성이 있으나 ○○ 댐 비상여수로 조경공사 완료시 활용되지 못할 우려가 있다.

□ 결 과

○○-○○ 연결공사 추진상황 및 유입량이 매우 적은 현지여건을 고려하여 제2사토장 조경계획에 대한 전면적인 재검토가 필요하다.

【조치할 사항】

□ ○○권관리단에서는 제2사토장과 관련하여 현재 설치 예정인 건천, 여울, 습지 등의 물 관련 시설물은 사또장 유입수량 등을 고려하여 설치 여부를 재검토 하고 ○○-○○ 연결공사 시행시기를 고려하여 사토장 복구 계획을 수립·시행 하시기 바랍니다.[통보: ○○권관리단]
번호	제목	비상여수로 하류 호안공 계획 재검토	처분요구 종류	통보
3 | ○ ○댐 | ○ ○댐 비상여수로 하류 호안공 계획 재검토 | | |

【실 태】

최근 빈발하는 이상기후에 대비, ○ ○댐의 수문학적 안정성 확보를 위해 추진중인 비상여수로는 개거식으로 비상여수로 직하류에 하천구간을 신설하게 되며 PMF 유입에 따른 비상방류시설이 감세지 이후 하류 방수로(L=889m) 구간의 사면보호를 위해 호안공을 계획하고 있다.

호안공의 설치범위는 PMF 유입시 방류량(홍수량 21,742㎥/s, 염두방류량 7,584㎥/s)에도 대비할 수 있도록 스톤 메트리스 공법을 적용(EL.42.0m~EL.49.5m) 하고 있으며 '09. 9.22 감사일 현재 방수로 좌우 사면 일부구간(L=500m, 1천㎡)을 시공중에 있다.

한편 건설중단의 경우 직하류구간 호안공의 설치범위는 아래와 같이 일정한 기준없이 하천통수능을 고려한 규모에서 PMF 방류에도 안전한 범위까지 적용되고 있으므로 ○ ○댐 비상여수로 방수로 호안공은 파다설계 우려가 있는 실정이다.

[표-6. 건설중단 직하류구간 호안공 설치 기준 현황]

<table>
<thead>
<tr>
<th>구분</th>
<th>기준수위</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>화북댐</td>
<td>200년 방수 방류량(586㎥/s)</td>
<td></td>
</tr>
<tr>
<td>성덕댐</td>
<td>150㎥/s (제방고 및 통수능고려)</td>
<td>※200년방수 방류량(49㎥/s) ~ PMF방류량(852.8㎥/s)</td>
</tr>
<tr>
<td>부항댐</td>
<td>403㎥/s PMF 방류량</td>
<td></td>
</tr>
</tbody>
</table>

【검토 내용】

□ 문제점 및 원인

댐설계기준(2005, 한국수자원학회)에 의하면 비상여수로는 만일의 사태에 대비한 비상시설물로 향후 사용빈도가 일반시설물에 비하여 상대적으로 회박할
뿐만 아니라 하천설계기준(2005, 건설교통부)에도 호안의 비탈덮기는 일반적으로 계획홍수위로 한다는 기준이 명확히 제시되어 있는 점을 감안할 때, 급강수계 하천정비기본계획(대전청 고시 제2003-107호, '03.05.02)상 하류 급강의 계획홍수위는 100년빈도이므로 ○○ 댐 비상여수로 방수로의 PMF 방류기준 호안공은 과다설계에 의한 예산낭비 우려가 있다.

※ 비상여수로의 개념 : (댐설계기준 9.2.4 비상여수로, 383쪽)
(2) 비상여수로는 비상사태시 본 여수로와는 별도로, 혹은 동시에 작동하여 댐의 월류를 방지하여 댐의 안전을 확보하는 여수로이며 비상사태는 다음과 같다.
(가) 방류관의 폐쇄, 여수로 수문의 고장, 또는 여수로 구조물의 부분적인 파손으로 여수로를 우회할 필요가 발생할 경우
(나) 유입된 홍수량의 미방류로 홍수조절용량이 확보되지 않은 상태에서 또 다른 대홍수가 유입되는 경우
(다) 설계 유입홍수보다 큰 홍수가 발생하는 경우(이 경우 비상여수로는 보조여수로로 작용)

※ 호안의 비탈덮기의 기준 : (하천설계기준 24.3 비탈덮기 365쪽)
(2) 비탈덮기의 높이는 고수호안의 경우, 일반적으로 계획홍수위로 하나, 특수한 경우에는 제방 폭마루까지로 한다.

□ 결과

○○ 댐 비상여수로 방수로 호안공은 시설물 사용빈도 및 하류하천과의 연계성을 감안할 때, 설치범위를 조정(200년빈도 방류기준 49천㎥/s →35천㎥/s, △14천㎥/s)하여 시행함으로써 예산을 절감(619백만원 절감)할 필요가 있다.

【조치할 사항】

□ ○○ 댐 비상여수로의 방수로 호안공은 여수로 사용빈도 및 하류하천의 정비현황과 현재 시공된 부분을 감안하여 하천설계기준 및 타 댐 사례와 같이 계획홍수위(200년빈도 방류기준)기준으로 설치하는 방안을 검토, 조치하여 예산집행의 효율성을 제고하시기 바랍니다. [통보 : ○○ 댐관리단]
[Ⅲ-2] 공정관리 및 품질확보에 관한 사항

| 번호 | 제목 | 차수분 계약전 사전공사 시행 검토 | 처분요구 종류 | 검토
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【실 때】
기존댐 치수능력증대사업 시행시 일부 사업장은 당해연도 필요예산 부족으로 차수계약을 조기준공 한 후 구조물 안정성 및 효율적인 공정관리를 위하여 정확적인 공사계약 체결이전에 수급업체 자금을 선투입하여 사전공사를 수행하고 있는 실정이다.

○ ○ ○댐 비상여수로공사는 터널공사 특성상 굴착공사 완료후 장기간 굴착면 노출에 따른 안정성 확보 및 잔여공사의 효율적인 공정관리를 위하여 라이닝 콘크리트 등 후속공중을, ○ ○ ○댐 비상여수로 공사는 감세지구간 대절토 굴착면의 안정성확보 및 콘크리트의 연속타설을 통한 최적의 품질관리를 위하여 수급업체로부터 실정보고를 받아 승인하는 형식을 통하여 수급업체 재원으로 2009년 9월 8일 감사일 현재 미 발주된 공종을 4차년도까지 시행중에 있다.

① ○ ○ ○댐 비상여수로 건설공사 사전공사 시행현황

○ ○ ○권관리단에서 ○ ○ ○댐의 수문학적 안정성 확보를 위하여 시행중인 “○ ○ ○댐 비상여수로 건설공사” 4차년도(2009년) 공사의 경우 2009년 1월 21일 착공하여 터널 라이닝 공사를 시행하였으나 정부 예산 부족으로 2009년 6월 30일 조기 준공(준공금액 24,070백만원)하였으며 4차년도까지 라이닝 시공현황은 아래와 같다.

[표-7. 4차년도 준공시 라이닝 시공 현황] (단위 : m)

<table>
<thead>
<tr>
<th>구분</th>
<th>라이닝 시공 연장</th>
<th>기시공</th>
<th>미시공</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>1,262 (100%)</td>
<td>654 (52%)</td>
<td>608 (48%)</td>
</tr>
<tr>
<td>1터널</td>
<td>379</td>
<td>212</td>
<td>167</td>
</tr>
<tr>
<td>2터널</td>
<td>421</td>
<td>232</td>
<td>189</td>
</tr>
<tr>
<td>3터널</td>
<td>462</td>
<td>190</td>
<td>272</td>
</tr>
</tbody>
</table>
조기준공에 따라 수급업체에서는 시공중인 터널의 안정성 확보 및 효율적 공정관리 등을 사유로 터널공사, 월류웨어부 구조물 공사 및 부대공사(차수 그라우팅) 등에 대하여 제5차년도 공사 계약전 사공전자 사전공사 승인을 요청【대림○○비상 제09-106호('09.8.25)】하였고 ○○권관리단에서는 이를 승인(○○권관리단-9652호('09.8.31))하여 현재 차수분 계약 없이 공사를 시행중에 있다.

<○○댐 비상여수로 사전공사 시행내용>

■ 사전공사 시행사유

• (여수로터널 안정성 확보) 터널공사 특성상 굴착공사 완료후 굴착면의 안정성 확보를 위해 라이닝 콘크리트 등 일련의 후속공정이 연속적으로 최단기간내 완료되어야 하며, 장기간 노출될 경우 터널안정성 확보에 불리

• (효율적 공정관리) 장기간의 계약공백기간 동안 공사 중지시 인원·장비 수급 애로 등 작업효율이 저하됨(월류웨어부 피어구조물 등은 System Form에 의한 연속작업 필요)

■ 사전공사기간 : 2009. 7. 1 ~ 2009.12.15

■ 사전공사내용

• 터널공사(일반부 및 천이부 라이닝 콘크리트 타설), 구조물 공사(월류웨어부 피어 구조물, 교대 및 응벽구조물), 부대공사(지반개량공<차수그라우팅>)

② ○○댐 비상여수로 건설공사 사전공사 시행현황

○○댐관리단에서 시행중인 “○○댐 비상여수로 건설공사”의 경우에도 제4차년도(2009년) 공사의 경우 2009년 1월 12일 착공하여 조절부 콘크리트 타설 및 감세공 응벽콘크리트 타설 공사를 시행하였으나 정부 예산 부족으로 4차년도 계약분을 2009년 7월 27일 조기 준공(준공금액 20,800백만원)하였다.

이에 따라 사공자가는 4차년도 준공 후 다음차수 착공전까지 공백기간 동안 품질안전 확보 및 잔여공사 추진일정 등을 감안하여 공정관리에 필요한 공중에 대한 선공사 시행여부를 “공사중지기간 사전공사 시행 승인요청【삼건(○○)09-143호('09.9.7)】”을 통하여 요청하였으며 ○○댐관리단에서는 “사전공사 시행 승인【○○댐관리단-6978('09.9.11)】”을 통하여 사전공사를 승인하고 현재 차수분
계약없이 공사를 시행중에 있다.

< ○○댐 비상여수로 사전공사 시행내용 >

■ 사전공사 시행사유

• (콘크리트 댐의 품질관리) 콘크리트 댐의 시공특성상 연속타설을 통한 최적의 품질관리가 필요한 공정으로 계속공사를 통한 품질확보 필요

• (현장 안전관리) 현장 굴착중인 감세지구간은 벽체부(H=26m)를 굴착하는 공정으로 공사중지시 사면붕괴 등의 안전사고 우려가 있음

■ 사전공사기간 : 2009. 7.28 ~2009.12.15

■ 사전공사내용

• 조절부(콘크리트 타설 및 압밀/치수그라우팅 시공), 감세공(토공 및 웅벽콘크리트 타설), 낙차공(낙차공 콘크리트 타설), 기타(수문제작, 조경 등)

[검토 내용]

□ 문제점 및 원인

장기계속 계약의 경우, 다음 차수분 계약이 체결되지 아니한 상태에서 다음 차수 계약대상에 포함될 공종을 계약체결 이전에 미리 우선시공하는 것은 원칙적으로 허용되지 않으나 공정이행의 차원으로 인한 품질저하 및 안정성 확보가 우려되는 등 긴급하게 공사를 수행할 필요가 있을 경우에는 발주기관에서 그 긴급성과 불가피성, 공정관리(예정공정표상의 공정일자와 계약기간과 다르게 되는 점 등), 대가의 지급조건을 어떻게 할 것인지 등의 제반사항과 그 문제점을 종합적으로 감안, 판단하여야 하나 치수능력증대 사업의 경우 수급업체의 사전공사 시행 실정보고를 원안승인하여 공사를 시행하게 함으로써 향후 수급업체와 대가관련 감독, 공사시험과 관련한 문제점 발생과 사전공사 기간중 CP(Critical Path) 공사시행으로 인한 지체상금 부과요인 목인 등의 문제가 발생될 우려가 있다.
결과

터널의 안정성 확보 등을 위하여 다음 차수분 계약체결 이전에 사전공사를 시행할 필요가 있을 경우, 이에 따른 재반문제점 및 대책방안을 구체적으로 검토한 후 추진방안을 수립, 시행할 필요가 있다.

조치할 사항

차수분 공사계약 체결이전 우선시공이 필요한 경우에는 관련법상 적법성, 손해보험 적용가능성, 절대공기 포함여부, E.S 적용범위, 추가간접비 지급여부, 하도급 대금 지급방안 등 이에 따른 재반문제점 및 행정처리 사항 등에 대하여 종합적으로 검토한 후 합리적인 공사 시행방안을 수립, 시행하시기 바랍니다. [검토: 댐·유역관리처]
【실 태】

일반적으로 비상여수로 및 댐과 같은 복합공종은 공정관리시 PERT/CPM\(^2\) 등에 의한 전산처리로 작성된 공정표를 기준으로 공사수행에 핵심의 인원, 장비, 자재계획을 수립하고 공종별 시공시기, 순서 등의 세부계획을 수립하여 공사를 시행하고 있다.

건설공사감독사업무지침(국토해양부 봉령 제2009-386호, ‘09.8.24) 제34조(공정 관리) 등에 의하면 공사 감독자는 당해 공사가 정해진 공기내에 소요의 품질을 갖추어 완성될 수 있도록 수급자를 지도하여야 하며, 우리공사 건설기술관리규정 제49조(공정관리)에 의하면 감독원은 공정예정표에 따라 공사를 진행하여야 하며 적정한 공정관리 기법(500억 이상의 경우 PERT/CPM)을 적용하여야 한다고 기술되어 있다.

그러나 우리공사가 추진중인 기존댐 치수능력증대사업 등 대부분의 건설공사는 정부예산 배정지연 등으로 공기지연이 매우 빈번하게 발생되고 있는 실정이다.

① ○○○댐 재개발 사업

○○○댐관리단에서 시행중인 “○○다목적댐 재개발사업 비상여수로 및 부대시설공사”의 경우 2008년 6월 16일 착수하여 2012년 1월 29일 준공예정으로 추진중에 있다.

위 공사 설시설계서 작성된 “○○ 댐 재개발 건설사업 시공계획보고서”에 의하면 공사의 CP(Critical Path)는【가설공사(2개월)→출구부 굴착공사(5개월)→터널굴착(12개월)→라이ninger 축조(9개월)→입구부 구조물공(4개월)→수문설치(7개월)→공도교 설치 및 시운전 등 뒷정리(3개월)】로 계획되어 있으며 또한 계약 1차 년도에 수급업체로부터 제출된 전체공정표에 의하면 2009년 4월 터널 굴착이 시작되는 것으로 계획되어 있다.

\(^2\) PERT(Program Evaluation and Review Technique), CPM(Critical Path Method)
그러나 ’09. 9월 25일 감사일 현재 접대공기 1,260일 중 404일이 지나 전체 공기 중 32%가 소진되었으며 당초 공정계획 기준으로는 터널굴착이 이루어져야 하나 현재 전체 누계공정율은 약 8.87%로 가물막이 완료 및 출구부 굴착공사가 시행되고 있는 둥 지연되고 있으며 당초 실시설계시 제시된 공정표에 의하면 잔여 물량을 고려할 때 터널 굴착의 경우, 2010년 중이나 가능할 것으로 판단 된다.

【 ○○○ 댐 비상여수로 전체 공정표 】

또한 ○○○ 댐 비상여수로 공사의 경우 시설공사와 강재설비 공사가 별도로 발주되어 두 공사에 대한 복합공정계획을 수립하여 최적의 공사추진이 이루어져야 하나 수급업체가 작성·제출한 전체분 예정공정표에 의하면 비상여수로 수문설치 공기(시공계획서상 7개월)를 반영하지 않고 2011년 12월에 준공되는 것으로 공정표가 계획되어 있다.
※ ○○○댐 강재설비 공사 현황

- 시설내용 : 비상여수로 수문설비(Radial Gate 4문), 기존여수로 수문설비 교체(Radial Gate 15문), 취수설비(Cylinder Gate) 1식
- 공사기간 : 2009. 6. 1 ~ 2011.11.17
- 공 사 비 : 26,033백만원

② ○○댐 비상여수로 건설공사

○○댐 권리단에서 시행중인 "○○댐 비상여수로 건설공사"의 경우 2008년 12월 1일 착공하여 2012년 6월 29일 준공 예정(절대공기 1,095일)으로 공사 추진중에 있으나 CP(Critical Path) 상의 주공정 공사 불가 및 사토장 인허가 지연 등으로 계획 기간내 공사 완료가 어려운 실정이다.

2-1 Critical Path 공정 미시행으로 인한 공사기간 증가

○○댐 비상여수로 건설공사의 절대공기는 1,095일로서 시공계획서에 의하면 동 공사의 CP(Critical Path)는 【공사용도로(1.5개월)→진입도로(2개월)→가물막이(5개월)→웨어부 토공(9개월)→웨어부 구조물(8.5개월)→수문설치(2개월)→가물막이철거(1개월)→접근수로 구조물(5.5개월)→시운전(0.5개월)→공기단축(2개월)】으로 이루어져 있다.

제1차년도(2008년) 공사의 경우 기본 및 실시설계비 등 도급공사비 2,843백만원에 절대공기 10일로 준공하였고 제2차년도(2009년) 공사의 경우 2009년 1월 21일 착공, 3월에 걸쳐 총 171일 공사 중지하였으며 2009년 9월 11일 현재 63일간의 절대공기 공사를 시행하고 있으나 현재 시행되는 감세지 굴착의 경우 주공정이 아닌 보조공정으로 향후 절대공기가 부족할 우려가 있다.

[표-8. 공사중지 현황] (단위 : 일)

<table>
<thead>
<tr>
<th>구분</th>
<th>사유</th>
<th>기간</th>
<th>중지일수</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td></td>
<td></td>
<td>171</td>
</tr>
<tr>
<td>1</td>
<td>동절기 공사중지</td>
<td>2. 2~2.28</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>진입도로 변경 및 사유지 미보상으로 인한 공사중지</td>
<td>3.19~8. 9</td>
<td>144</td>
</tr>
</tbody>
</table>
2-2 이설도로 변경 및 사토장 인허가 불가로 인한 공사기간 증가

신설되는 비상여수로 위치에 기존 도로가 위치하고 있어 이설도로 공사가 진행되어야 하며 2008년 10월 안동시에서 당초 설계된 2차선을 4차선으로 확장토록 요구함에 따라 국토해양부 및 기획재정부 협의를 거쳐 2009년 9월 1일 이설도로 총사업비가 4차선으로 확장하는 것으로 변경되었다.

이에 따라 진입도로 1.2㎞에 대한 ○○시 협의(시행주체) 및 재설계 기간이 필요하며, 또한 실시설계 협의서 보전산지에 해당하여 산지전용이 허가되지 않은 사토장의 인허가 협의 기간이 필요한 실정이다.

【검토 내용】

□ 문제점 및 원인

비상여수로와 같은 구조물 공사의 경우 단순공정이 아닌 복합공정으로 CP에 의한 공정관리가 이루어져야 하며 예산 부족 등의 사유로 예산에 맞추어 공사를 시행하고 있어 건설공사 공정계획 검토가 이루어져지지 않고 있다.

□ 결 과

○○○다목적댐 비상여수로의 경우 전체 공사기간 중 32%가 소비되었으나 전체 공정은 8.87%로서 향후 공사기간 부족 등으로 지체상급 발생 또는 공기 연장으로 인한 추가간접비가 발생될 우려가 있으며 시설공사와 강제설비공사가 별도로 발주되어 두 공사에 대한 복합공정이 검토되어 있지 않다.

또한 ○○댐관리단의 경우에도 현재 시행되는 공종이 감세지 굴착으로 CP 공정이 시행되고 있지 않아 향후 설대공기가 부족할 것으로 판단된다.
【조치할 사항】

□ ○○○댐 관리단에서는 "○○○다목적댐 재개발사업 비상여수로 및 부대시설공사"와 "○○○댐 강제설비 제작설치공사"의 공정계획을 면밀히 검토하여 두 공사를 포함하는 복합공정으로 공정계획을 검토, 조정하여 향후 공기연장 등이 최소화 될 수 있도록 조치하시기 바랍니다. [검토 : ○○○댐관리단]

□ ○○권 관리단에서는 "○○댐 비상여수로 건설공사"의 공정계획을 면밀히 검토하여 향후 공기연장 등이 최소화 될 수 있도록 조치하시기 바랍니다. [검토 : ○○권관리단]
【실 태】

○ ○권관리단에서는 가능한대홍수량 유입에 대비한 ○ ○댐의 안정성을 확보하기 위하여 “ ○ ○댐 비상여수로 건설공사”를 2006년 8월 30일 ○ ○ ○ ○주와 도급공사비 151,769백만원에 계약하여 2006년 8월 31일부터 2010년 6월 24일 준공 예정으로 공사 시행중에 있다.

위 건설공사의 경우 터널라이닝, 입출구부 구조물 등 172천㎥의 콘크리트가 투입되는 대규모 공사로서 콘크리트의 품질관리가 매우 중요한 공사이다.

동 공사 "입찰안내서 4.3 시공지침"에 의하면 계약상대자는 공사시행시 건설 기술관리법 시행규칙 제15조의4 제1항 관련 건설공사 품질관리기준에 의거 공사를 시행하여야 하며, 시행규칙 별표10에 의하면 골재의 경우 1,000㎥, 시멘트의 경우 300ton, 철근 및 강재의 경우 100ton에 1회씩 품질시험을 시행토록 하고 있다.

○ ○권관리단에서는 철근의 경우 100ton에 1회씩 한국건자재시험연구원 등 공인기관에 시험을 의뢰하고 시멘트, AE제, Fly-ash 등의 경우 제조공사 시험 성적서 확인으로 품질시험을 시행하고 있으며 건설공사 품질시험기준(건설교통부 고시 제2008-83호 2008.2.29) 제4조의 예외조항 등을 고려하여 아래와 같이 ○ ○댐 비상여수로 건설공사에 사용되는 콘크리트 품질 시험빈도를 변경하였다.

※ 예외조항 : 건설공사 품질시험기준 제4조(품질시험기준) ③발주자가 공사종류 및 중요성, 현지설정 등을 감안하여 특히 필요하다고 인정하는 경우에는 별표의 품질시험기준의 시험빈도를 조정할 수 있다.

[표-9. 품질시험기준 시험항목/빈도/횟수 변경 현황] (단위 : 회)

<table>
<thead>
<tr>
<th>구분</th>
<th>시험종류</th>
<th>시험빈도</th>
<th>시험횟수</th>
</tr>
</thead>
<tbody>
<tr>
<td>진공재</td>
<td>입도시험</td>
<td>1회/1,000㎥</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>0.08밀리미터체 통과량</td>
<td>공사시작 전 공사 중 1회/월 이상</td>
<td>24</td>
</tr>
</tbody>
</table>

- 24 -
<table>
<thead>
<tr>
<th>구분</th>
<th>시험종류</th>
<th>시험빈도</th>
<th>시험횟수</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>구근골재</td>
<td>비중 및 흡수율</td>
<td>1회/1,000㎥</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>입도시험</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.08밀리터체 동과량</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>비중 및 흡수율</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>마모</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>콘크리트용 화학혼화제</td>
<td>KS F 2560 규정된항목</td>
<td>제조회사별</td>
<td>제조회사의 시험성적표에 의한 확인</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>적외선 흡수스펙트럼</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>시멘트</td>
<td>비 중</td>
<td>1회/300ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>안정성</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>분말도</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>용질시간</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>물탈 압축강도</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>플라이어서</td>
<td>KS L 5405 규정된항목</td>
<td>제조회사별</td>
<td>제조회사의 시험성적표에 의한 확인</td>
<td>1</td>
</tr>
<tr>
<td>철근 및 강재</td>
<td>인장력도</td>
<td>1회/100ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>열발생</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>발화성</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>화학분석</td>
<td>P(인)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S(황)</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

【검토 내용】

□ 문제점 및 원인

건설공사 감독원의 경우 건설기술관리법 제24조(건설공사의 품질관리)등에 의거 건설공사의 품질확보를 위하여 품질 및 공정관리 등 건설공사의 품질관리 계획을 수립하여 설계 및 시공기준에 따른 품질시험 및 검사를 시행하여야 한다.

그러나 ○○관리단에서는 기존 시험빈도 기준에 따른 시험결과 사용중인 자재가 기준에 적합하고 품질변화에 우려가 없다는 사유로 “콘크리트 품질시험 비도변경 승인【○○관리단-5763(‘09.5.27)】”을 통하여 품질시험 비도를 조정하였다.
결과

○ ○권관리단에서는 골재, 시멘트, 철근 등 주요자재에 대하여 구체적인 품질 확보 방안 검증 없이 현장판단으로 시험빈도를 열악하게 조정함으로서 장래에 발생가능성이 있는 재료의 품질 불량에 대한 검사를 소홀하게 하는 결과를 초래하였다.

【조치할 사항】

□ ○ ○댐 관리단에서는 콘크리트 재료시험 빈도를 관련법에서 정한 기준대로 강화하여 공사 품질확보에 전력을 기하시기 바랍니다. [시정 : ○ ○권관리단]
<table>
<thead>
<tr>
<th>번호</th>
<th>7</th>
<th>제목</th>
<th>○○○댐 저수지내 수목제거 방안 검토</th>
<th>처분요구 종류</th>
<th>검토</th>
</tr>
</thead>
</table>

【실 태】

○○○댐은 최근의 이상기후에 대비한 수문학적 안정성확보 및 호남지역의 합리적인 용수공급을 위해 ○○○다목적댐 재개발사업을 시행중(’03~’10)에 있으며 주요내용은 이상홍수에 대비한 비상여수로 신설과 댐건설당시부터 홍수 위선내 거주민으로 인하여 비정상적(상시만수위 EL. 196.5m, 운영수위 EL. 191.5m, ↓5m)으로 운영되고 있는 댐 수위를 정상화함으로써 추가 확보되는 용수(65백만㎥/년)를 호남동남부지역에 공급하는 것이다.

○○○댐은 준공(1965년) 이후 1969년부터 저수구역내 거주하는 주민(235세대)들의 침수피해를 방지하기 위하여 약 40여년 동안 저수지 수위를 5m이상 낮추어 운영하고 있으며 그 결과 상시 노출된 상시만수위~운영수위 사이 임야지역에는 많은 수목이 분포하고 있으며 댐 운영정상화시에는 이의 침수에 따른 부패로 수질오염이 우려되는 실정이다.

【검토 내용】

□ 문제점 및 원인

우리공사에서는 “댐건설 수몰지내 건설폐기물의 합리적인 처리방안(’98.12)” 용역을 통해 상시만수위이하 임야의 침수시 부패에 의한 유기물 방출로 수질에 다소의 영향을 미칠수 있으므로 벌개하는 것으로 방안을 기 수립하였고 신규댐의 경우 담수이전에 임야의 수목을 전부 제거하고 있는 실정이나 ○○○댐은 홍수위내 거주민으로 인하여 약 40여년 동안 수위를 낮추어 운영함으로써 현재 운영수위~상시만수위까지 상당한 수목이 식생하고 있으며 댐 운영정상화 이후 침수되어 수질에 나쁜 영향을 미칠것으로 우려되는 실정이다.
결 과

○○○○댐은 현재 광역상수도 상수원으로 활용되고 있으므로 만 아니라 재개발 이후 광양만권 용수공급을 위한 생공용수 댐사용권(65백만㎥/년)이 추가 설정될 예정이므로 항구적인 저수지 수질보전을 위하여 상시만수위 이하 수목에 대한 합리적인 처리방안 및 이에 따른 재원확보 등의 세부시행계획 수립이 필요한 것으로 판단된다.

【조치할 사항】

□ ○○○○댐 상시만수위 이하에 식생하고 있는 각종수목을 제거하기 위한 관계 기관(댐사용권자, 관련지자체) 협의 및 필요 재원을 조속히 확보하여 댐 운영정상화 이후 광양만권에 대한 용수공급이 원활히 이루어질 수 있도록 수목처리계획을 수립, 시행하시기 바랍니다. [검토: ○○○○○○처]
[Ⅲ-3] 준공이후 시설물 유지관리에 관한 사항

<table>
<thead>
<tr>
<th>번호</th>
<th>제목</th>
<th>처분요구 종류</th>
<th>검토</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>터널 유지관리 효율성 제고 방안 검토</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【실 태】

최근 기존댐 수문학적 안정성 확보를 위하여 추진중에 있는 기존댐 치수능력 증대사업의 주요방안은 터널식 비상(보조)여수로 및 개거식 비상(보조)여수로 신설, 기존여수로 보강 등으로 대별될 수 있으며 터널식 여수로는 아래와 같이 ’09. 9. 10 감사일 현재 1개댐 완료, 4개댐 공사 중 및 4개댐이 계획되어 있는 상황이다.

그러나 준공이후 터널 구조물에 대한 거동분석 및 장기적 안정성 확인을 위한 계측시스템 구축과 각종 점검, 진단, 보수작업 등 원활한 시설물 유지관리를 위한 터널 접근로 확보방안이 없거나 댐별로 상이하여 향후 시설물 관리시 일관된 유지관리가 어려운 실정이다.

주) 미착수 댐은 「댐의 수문학적 안정성 검토 및 치수능력증대 기본계획 수립(’04.9)」결과
표-11. 현재 완료 또는 공사중인 치수능력증대사업 유지관리시설 계획현황

<table>
<thead>
<tr>
<th>구분</th>
<th>규모</th>
<th>유지관리시설 적용현황</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>수여댐</td>
<td>D14m×L1,280m(2면)</td>
<td>라이닝응력계등 4종</td>
<td>카리포트</td>
</tr>
<tr>
<td>소양강댐</td>
<td>D15m×L462m(3면)</td>
<td>라이닝응력계등 6종</td>
<td>유지도로(출구부)</td>
</tr>
<tr>
<td>임하댐</td>
<td>D13.5m×L674m(2면)</td>
<td>라이닝응력계등 2종</td>
<td>-</td>
</tr>
<tr>
<td>대암댐</td>
<td>D10m×L427m(2면)</td>
<td>-</td>
<td>사다리(유입부)</td>
</tr>
</tbody>
</table>

[검토 내용]

□ 문제점 및 원인
터널구조물은 지중에 설치되므로 육안관찰이 쉽지 않고 불안정을 일으키는 원인파악이 어려우므로 터널의 거동현황을 상시 모니터링하여 위험징후 발견시 사전에 조치함으로써 구조물의 안정성을 확보할 필요가 있으나 댐별로 계측시스템 설치 종류가 상이하고 미설치된 댐도 있어 향후 터널의 장기적 안정성 확보가 어렵다.

또한, "시설물의안전관리에관한특별법"에 의한 정밀진단 및 각종 점검과 홍수방류 및 지진발생 이후 등 시설물의 이상유무 확인 및 보수가 필요할 시 장비진입방안이 확보되지 않아 터널구조물의 일상적인 유지관리가 어려운 실정이다.

□ 결과
터널구조물의 영구적인 안정성 확보와 원활한 유지관리를 위해서 터널식 여수로 설치시에는 구조물 거동 모니터링을 위한 계측시스템 도입과 접근로 확보방안에 대하여 필요성을 검토하고 반영하여야 할 필요가 있다.

[조치할 사항]
□ 현재 건설·설계 중(임하, 섬진강, 주암댐)이거나 계획중인 치수능력증대사업에서 터널식 여수로를 설치시에는 향후 유지관리를 위한 계측시스템 및 접근로의 설치 필요성을 구체적으로 검토하여 효율적 설치방안을 수립, 시행하시기 바랍니다. [통보: ○○○○○○처]
【실 태】

○ ○댐관리단에서는 기존댐의 수문학적 안정성 확보를 위해 제1부댐 위치에 개수로형 원류식 여수로(높이 56m, 길이 280m, Radial gate 5문)를 신설하는 공사를 추진중에 있으며, 비상여수로 공사완료 이후 좌·우안 가설부지 및 사토장부지에 자연환경 복원 및 지역경제 활성화를 위해 아래와 같이 8개 구역으로 나누어 관광자원 조성을 위한 조경공사(조성면적 343천㎡, 공사비 6,730백만원)를 계획하고 있으며 실시설계(대전국토관리청고시 제2008-203호, ‘08.11.03)고시 관리처분계획상 관리주체는 한국수자원공사로 지정되어 있다.

【표-12. ○ ○댐 비상여수로 조경계획 현황】

<table>
<thead>
<tr>
<th>구분</th>
<th>조성면적(㎡)</th>
<th>조성계획(백만원)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. ○ ○여울마루</td>
<td>45,634</td>
<td>860 1,716 2,576</td>
</tr>
<tr>
<td>2. 물체협학습장</td>
<td>27,160</td>
<td>453 534 987</td>
</tr>
<tr>
<td>3. 물막은마당</td>
<td>16,430</td>
<td>409 480 889</td>
</tr>
<tr>
<td>4. 억새마당</td>
<td>5,204</td>
<td>127 77 204</td>
</tr>
<tr>
<td>5. 사토장조경</td>
<td>156,927</td>
<td>1,292 - 1,292</td>
</tr>
<tr>
<td>6. 여수로 조경</td>
<td>80,653</td>
<td>532 185 717</td>
</tr>
<tr>
<td>7. 접근수로 조경</td>
<td>9,370</td>
<td>15 - 15</td>
</tr>
<tr>
<td>8. 생태통로 조경</td>
<td>1,654</td>
<td>50 - 50</td>
</tr>
<tr>
<td>계</td>
<td>343,032</td>
<td>3,738 2,992 6,730</td>
</tr>
</tbody>
</table>

또한 우리공사에서 시행하고 있는 치수능력증대 사업별 조경계획 총괄은 아래와 같다.

【표-13. 각 댐별 조경계획 현황】

<table>
<thead>
<tr>
<th>구분</th>
<th>조성면적 (㎡)</th>
<th>조성금액 (백만원)</th>
<th>조성내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td>1,061,066</td>
<td>28,372</td>
<td></td>
</tr>
<tr>
<td>소양강댐</td>
<td>99,492</td>
<td>5,075</td>
<td>선착장주차장, 생태체험장, 필각정, 고사분수 등</td>
</tr>
<tr>
<td>대청댐</td>
<td>343,032</td>
<td>6,730</td>
<td>대청여울마루, 물체협학습장, 물막은마당, 사토장 조경 등</td>
</tr>
<tr>
<td>구분</td>
<td>조성면적 (㎡)</td>
<td>조성금액 (백만원)</td>
<td>조성내용</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>섬진강댐</td>
<td>180,110</td>
<td>8,246</td>
<td>불문화관, 친환경공원, 쌍암리 생태공원, 사토장 공원 등</td>
</tr>
<tr>
<td>안동댐</td>
<td>206,934</td>
<td>3,555</td>
<td>사토장 조경(파크골프장, 하늘수목원), 나들 이첩터, 전망광장 등</td>
</tr>
<tr>
<td>임하댐</td>
<td>182,622</td>
<td>3,508</td>
<td>불루오브제파크, 블루에코파크, 호수자리 복원, 접근수로 녹지 등</td>
</tr>
<tr>
<td>대암댐</td>
<td>48,876</td>
<td>1,258</td>
<td>사토장 조경(체육공원, 코스모스 단지), 여수로 및 댐정상부 조경</td>
</tr>
</tbody>
</table>

각 댐별로 주로 사토장 복구를 통하여 지역주민 휴게공간 조성 및 관련 시설물을 설치하고 있으나 소양강댐 고사분수 및 각종 수경시설 등의 경우 유지관리에 많은 비용이 소모될 수가 있으며 공사 준공 후 각 댐별 관리처분 계획상 유지관리 주체가 명확하지 않아 향후 지자체 이관 등의 절차에 어려움이 발생할 우려가 있다.

[표-14. 각 댐별 관리처분계획]

<table>
<thead>
<tr>
<th>구분</th>
<th>협의여부</th>
<th>관리주체</th>
</tr>
</thead>
</table>
| 소양강댐 | 협의완료 | ○선착장 주차장, 선착장 진입도로 : 춘천시
○생태체험장, 방각정, 고사분수 : 한국수자원공사 |
| 대청댐 | 미협의 | ○한국수자원공사
⇒공원시설물 착공전 해당 지자체와 협의하여 관리처분계획 수립 필요 |
| 섬진강댐 | 미협의 | ○한국수자원공사
⇒공원시설물 착공전 해당 지자체와 협의하여 관리처분계획 수립 필요 |
| 안동댐 | 협의완료 | ○진입도로, 파크골프장, 하늘수목원 : 안동시
○나들 이첩터, 전망광장 등 : 한국수자원공사 |
| 임하댐 | 미협의 | ○한국수자원공사
⇒공원시설물 착공전 해당 지자체와 협의하여 관리처분계획 수립 필요 |
| 대암댐 | 협의중 | ○한국수자원공사
⇒현재 관련 지자체(울주군)과 관리이관 협약 체결중 |

위 관리처분계획에서 보여지는 듯이 전체 6개댐 중 지자체와 관리처분계획이 수립된 사업은 3개 뿐이며 지자체와 협의가 시행중인 사업도 2010년 준공을 앞두고 있는 대암댐이 유일하게 공사 시행 후 관리처분계획에 대하여 협의하고
【검토 내용】
□ 문제점 및 원인
댐 건설시 댐의 효용증진을 위하여 공원 및 체육시설 등 공공시설물을 설치하고 있으나 댐 규모에 비하여 공공시설물이 과다하여 물값 상승을 야기시키고 있으며 사전에 지자체와 관리처분계획에 대한 협의없이 설치되고 있어 준공후 인수인계에 많은 어려움이 있는 실정이었다.

이에 따라 수자원개발처에서는 “수자원개발사업의 공공시설물 사업시행 기준 수립【수자원개발처-2502('08.7.18)】”을 통하여 공공시설물 사업시행 기준을 수립하였으며 세부내용은 아래와 같다.

※ 공공시설물 사업시행 기준 내용
□ 공공시설물 설치기준
 · 부지 : 가설부지, 토취장, 사토장, 간접지, 훼손지
 · 규모 : 댐의 기능에 영향이 없는 범위내에서 최소화
□ 관리처분계획 협의절차
 · 협의시기 : 설계단계 ~ 최초 실시계획 수립 단계
 (건설중인 사업은 공공시설물 착공 전까지 협의하여 관리처분계획 수립)
□ 지자체 협의 상황별 대응방안
 · 지자체에서 추가 시설물 설치 요구시 : 댐의 효용증진에 부합되는 시설에 한하여 반영
 · 지자체에서 이관의사가 없거나 협의 저연시 : 재산권-관리권을 국가로 설정하고 사업규모와 내용은 유지관리를 고려하여 최소화

그러나 ○○댐 관리단 등 처수능력증대사업의 경우 실시계획 등에 관리처분계획이 명확하게 수립되어 있지 않으며 공사 시행중에 관련 지자체와 협의가 시행되고 있지 않다.

□ 결 과
항후 댐 효용증진을 목적으로 시행한 공공시설물이 설치 후 인계인수시 사전 협의 미시행으로 지연될 우려가 있으며 양 기관의 이견이 발생될 우려가 있다.
【조치할 사항】

□ 내철댐 등 현재 진행중인 치수능력 증대사업 조경계획은 "수자원개발사업의 공공시설물 사업시행 기준"에 의거 지자체 이관 여부 등을 고려하여 합리적 으로 재검토하고 과다하게 계획된 시설물은 향후 유지관리를 감안하여 조정 하여 시행하시고.

□ 또한 현재 진행중인 치수능력 증대사업 중 공공시설물 관리처분계획이 수립 되어 있지 않은 사업에 대하여 조속히 관리처분계획을 수립하고 원활히 공공시설물이 관련 지자체로 인수인계되어 당초 목적에 부합되는 시설물 유지관리가 시행될 수 있도록 조치하시기 바랍니다.
[검토: ○○○○○○처]